
 1 

Unit C2: Boolean Algebra, 10/28/03 

Exercise 1:  Pseudo-Electrical Engineer 
In a certain country at the fall of communism, a mathematician called Borisky needed to work as 
an electrical engineer.  He knew nothing about digital circuits, but he knew that digital circuits, 
set theory, and propositional logic are all isomorphic and instances of Boolean algebra.  So, he 
thought that he could handle his new job, relying on his expertise, set theory and propositional 
logic. 
 
Due to the shortage of components in his country, Borisky needed to use ‘&’ and ‘'’ components 
to simulate the unavailable ‘or’ components (show below).   
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Borisky guessed that there is an expression that involves only ‘&’ and ‘'’ but not ‘or’ that is still 
equivalent to expression x or y.  If this is true, he can use ‘&’ and ‘'’ to simulate all the cases 
involving ‘or’. 
 
A. What would be the equivalent expression Borisky guessed? 
 
 Hint: Since digital circuits are an instance of Boolean algebra, all the properties that apply to 

set theory and propositional logic also apply to digital circuits.  Review the reference slides  
in Unit B5 (Propositional Logic). 

 
B. Convert the two expressions (i.e., x or y and your answer to A.) to the corresponding 

expressions in set theory (i.e., using ‘∪’, ‘∩’, ‘'’, etc.) and justify the equivalence of the 
converted set expressions (within set theory). 

 
 Hint: You may use schematic representations to show the equivalence. 
In order to minimize the cost of mass-producing a digital circuit, Borisky needed to reduce the 
number of components used in a circuit represented as (x' & y')' & (z' & x')'.  By this time, the 
production of ‘or’ components are catching up.  He guessed that the circuit is equivalent to x or 
(y & z).  However, before mass-producing the circuit, he is required to verify the equivalence. 
 
C. First, convert the expressions (x' & y')' & (z' & x')' and x or (y & z) to the corresponding wff’s 

in propositional logic.  Then, prove [FIX THIS!!!] x or (y & z) by considering (x' & y')' & (z' 
& x')' as the hypothesis. 
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Exercise 2: Exotic Logic and Circuits 
Note: In this exercise, you will explore some exotic forms of propositional logic and digital 
circuits, and their connection to set theory.  This one may be slightly challenging.  Try as much 
as you can.  Your experience will be useful as a preview of  Unit C3, where this exercise will be 
discussed. 
 
Porpositional Logic involves two values, true (T) and false (F).  However, in reality, we often 
encounter situations where we have to say “neither,” or “undefined” (U) (recall your response to 
my questions in class).  Note that there are logicians who seriously study variants of logic of this 
sort.  Then, we can define a structure such as the following: 
 
Prop3 = (V, ∧, ∨, ¬) 
where V = {T, F, U} 
 
A. Can Prop23 be a Boolean Algebra?  You can define the operations in favor of your answer.  

Concisely explain. 
 
 Hint: Unit C2 slides on the definition of Boolean Algebra. 
 
Next, let us turn to digital circuits.  Suppose that with advancement in electronics engineering, 
basic electronic devices use 4 states, instead of 2.  Note that related phenomena may be 
happening in the industry; can you point out?  Then, we can define a structure such as the 
following: 
 
Bool4 = (D, &, or, ') 
where D = {0, ♥, ♠, 1} 
 
B. Can Bool24 be a Boolean Algebra?  You can define the operations in favor of your answer.  

Concisely explain. 
 
Let us now turn to the other cousin of Boolean Algebra, set theory.  Here are two possible 
extensions of the structure Set discussed in Unit C2. 
 
Set3 = (S3, ∩, ∪, ') 
where S3 = {∅, {1}, {2}} 
 
Set4 = (S4, ∩, ∪, ') 
where S4 = {∅, {1}, {2}, {1, 2}} 
 
C. Concisely explain why Set3 is not a Boolean Algebra, regardless of how the operations are 

defined.  You could also try S3.1 = {∅, {1}, {1, 2}}, if you wish. 
 
D. Concisely explain why Set4 is a Boolean Algebra, with the usual definitions of the 

operations. 
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E. Draw some conclusion from your observation in Questions A. through D. above. 
 
Let us shift the discussion a bit.  Earlier in class, we noted that the following equivalence 
(verifiable using Venn diagrams): 
 
Equivalence: 
1. x ⊆ y  
2. x ∩ y = x  
3. x ∪ y = y 
 
Now, let us consider the following two structures involving S4, along with the usual definitions 
of the operations/relation. 
 
Set4 = (S4, ∩, ∪, ') 
Set5 = (S4, ⊆) 
where S4 = {∅, {1}, {2}, {1, 2}} 
 
Note that Set4 and Set5 are not isomorphic (why?).  So, Set5 is not a Boolean Algebra.  However, 
if we compare the information conveyed by the two structure, we notice that they are equivalent.  
Neither Set4 nor Set5 says more than the other.  Naturally, this is due to the fact shown in 
Equivalence above. 
 
F. Can you connect the above observation with your answer to Question E? 
 
 
<End> 


