
CSC460 C2 1

Exercise C1

Part 1: Your Own Problems
Part 2: Grammar and TM Variants

A. CFGs without empty productions
B. CFGs with rules such that |RHS| ≤ 2
C. TMs with 2 stacks
D. TMs with a queue

CSC460 C2 2

Unit C2: Overview

• Analyze a realistic example involving a
mini language

• Understand CFGs/CFLs
– Grammars, languages

• Understand how to process CFLs
• Understand the effect of determinism
• Preview Exercise C2 “Context-Free”

CSC460 C2 3

Extended Chomsky Hierarchy

CFG/PDA

RegExp/FSA

CSG/LBA

Grammar/TMTM-recognizable (RE)

Context-Sensitive

Context-Free

Regular

?/DeciderDecidable (Recursive)

Example grammars?
Essential properties?

Review

CSC460 C2 4

Graphing Tool
• Basic functions

– Constant: e.g., 1 (integers) and 2.34 (.5 must be written as 0.5)
– Factorial: only the fixed form of n!
– Logarithm: log OptBase NonConstantExp (OptBase: const)
– Power: Exp^Exp where Exp is a valid expression. Exp other

than a constant or n requires parentheses.

• Complex expression
– Complex expressions can be formed by using the operators *, /,

+, -, and parentheses (and). * and / takes precedence over +
and -. The operators are left associative.

• Notes
– Spaces are ignored internally.
– sqrt(n) must be entered as n^0.5.

How to specify?
How to process?

Demo

http://www.tcnj.edu/~komagata/Graphing

CSC460 C2 5

Group Exercise 1

• How would you implement the module to
analyze the input expressions?
– How to specify?
– How to process?

CSC460 C2 6

Context-Free Grammar (CFG)

• G = (N, T, R, S)
– N: finite set of nonterminals [upper case]

– T: finite set of terminals [lower case]

– R: finite set of rules A → α where α is a string
made up of the elements of N and T

– S: start symbol ∈ N

Formal definition for a CFG for graphing tool?

CSC460 C2 7

Context-Free Language (CFL)

• Derivation (generation) of a string in a
CFG, G (from the start symbol S)
– S →* w (i.e., zero or more rule application)
– Also said: “G generates w” or “G accepts w”

• L(G) = {w | S →* w, a string made up of the
elements of T}

• CFL = {L(G) | G is a CFG}

CSC460 C2 8

Parsing

• Parsing: Process of analyzing how a
particular string can be generated by a
grammar

• Top-down: Start from the “start symbol”
• Bottom-up: Start from the string
• Hybrid: Combination of both

CSC460 C2 9

Shorthand

• Alternatives: A → α | β
• A → α
• A → β

• Optional element: A → α [β]
• A → α
• A → α β

CSC460 C2 10

Top-down Parsing

• Example: Recursive-descent parsing
– Keep the current input and the remaining part

of the rule on stack
– Expand nonterminals
– Check terminals against the input

Demo

• S → A
• A → a A b | a b

CSC460 C2 11

Bottom-up Parsing

• Example: Shift-reduce parsing
– If the RHS of a rule matches a part of the

input, reduce it to the LHS symbol
– Otherwise, push the leftmost symbol onto the

stack and repeat (shift)

Essential component for processing?

Demo

CSC460 C2 12

Main CF Property

• Matching growth to the left and right
– E.g., (...()...), 0n1n, a1...anan...a1

• Characterized by balanced rules
– E.g., A → (A), A → 0 A 1, A → ai A ai

• Characterized by the use of stack
– E.g., pushing ‘(’ and later popping it and

matching with ‘)’

n n

0n1n2k3k, 0n2k3k1n, 0i2k3k0(n−i)1n

CSC460 C2 13

Push-Down Automata (PDA)

State 0 State 1 State 2 State k

Some mechanism to control
Machine with a finite number of states

s y m b o l s g i v e n / /

Stack

Read-only, left-to-right input tape

Nondeterministic

CSC460 C2 14

PDA, Formally

• M = (Q, Σ, Γ, δ, q0, F)
– Q: set of states
– Σ: set of input symbols
– Γ: set of stack symbols
– δ: transition function

Q × (Σ ∪ {ε}) × Γ → P(Q × Γ*)
Γ*: string of stack symbols

– q0: initial state ∈ Q
– F: set of final states ⊆ Q

Note: ε as the empty string

power set

CSC460 C2 15

Equivalence of CFGs and PDAs

• Simulate a CFG with a PDA
• Simulate a PDA with a CFG

CSC460 C2 16

Group Exercise 2

• Are there any potential parsing problem
the following grammars?

A
• S → A
• A → a A b | a b
• A → ε

B
• S → A
• A → a A a
• A → b

C
• S → A
• A → a A a
• A → a

CSC460 C2 17

Ambiguity

• Multiple derivations of a single string
• A complete analysis requires

nondeterminism.
• Problems with respect to:

– Semantics
– Efficiency

CSC460 C2 18

Deterministic PDA (DPDA)

• PDA where the range of the transition
function is a set of singletons (unique
state).
– Equivalently,

PDA: Q × (Σ ∪ {ε}) × Γ → P(Q × Γ)
DPDA: Q × (Σ ∪ {ε}) × Γ → Q × Γ

• Sufficiently powerful to characterize
programming language core

• Efficient parsing algorithms are known.

CSC460 C2 19

Deterministic CFL (DCFL)

• A subset of CFLs that can be processed
by a DPDA

• No easily identified class of grammars
– Practical issue for specifying a programming

language

CSC460 C2 20

Extended Chomsky Hierarchy

CFG/PDA

RegExp/FSA

CSG/LBA

Grammar/TMTM-recognizable (RE)

Context-Sensitive

Context-Free

/DeciderDecidable (Recursive)

/DPDADCF
Regular

CSC460 C2 21

Unit Summary

• Many mini languages can be specified and
processed by CFLs and PDAs.

• CFG: A single nonterminal on the LHS
(e.g., A → α)

• CFL: Specified by CFGs
• PDA: Process CFLs
• DPDA/DCFL: Deterministic subset of

PDAs/CFLs ~ backbone of programming
languages

CSC460 C2 22

Summary Question

• Can you see the “context-free”
property in some real-life
phenomena? Explain.

• Questions/Comments/Suggestions

