Exercise C1

Part 1: Your Own Problems
Part 2: Grammar and TM Variants
A. CFGs without empty productions
B. CFGs with rules such that [RHS| £ 2
C. TMs with 2 stacks
D. TMs with a queue

CSC460 C2

Unit C2: Overview

¢ Analyze a realistic example involving a
mini language

Understand CFGs/CFLs

— Grammars, languages

» Understand how to process CFLs

¢ Understand the effect of determinism

* Preview Exercise C2 “Context-Free”

CSC460 C2

Review

Extended Chomsky Hierarchy

TM-recognizable (RE) > - Grammar/TM

Decidable (Recursive)™>: -\ ?[Decider

Context-Sensitive -7~ CSG/LBA

Context-Free ~y-}-/ /= CFG/PDA
- RegEXp/FSA

Example grammars?
Essential properties?
CSC460 C2 o

Group Exercise 1

¢ How would you implement the module to
analyze the input expressions?
— How to specify?
— How to process?

CSC460 C2

Demo
Graphing Tool

 Basic functions
— Constant: e.g., 1 (integers) and 2.34 (.5 must be written as 0.5)
— Factorial: only the fixed form of n!
— Logarithm: log OptBase NonConstantExp (OptBase: const)
— Power: Exp™Exp where Exp is a valid expression. Exp other
than a constant or n requires parentheses.
» Complex expression
— Complex expressions can be formed by using the operators *, /,
+, -, and parentheses (and). * and / takes precedence over +
and -. The operators are left associative.
* Notes
— Spaces are ignored internally.

How to specify?
— sqrt(n) must be entered as n"0.5.

How to process?

CSC460 C2 http://ww. tcnj . edu/ ~komagat a/ Gr aphi ng 4

Context-Free Grammar (CFG)
*G=(NT,R9

— N: finite set of nonterminals [upper case]
—T: finite set of terminals [lower case]

— R finite set of rules A® a where a is a string
made up of the elements of N and T

— S start symbolT N

Formal definition for a CFG for graphing tool?

CSC460 C2

Context-Free Language (CFL)

« Derivation (generation) of a string in a
CFG, G (from the start symbol S

—S®* w(i.e., zero or more rule application)
— Also said: “G generates w” or “G accepts w”

¢ L(G) ={w|S®* w, a string made up of the
elements of T}

« CFL={L(G) |G is a CFG}

CSC460 C2

Parsing

« Parsing: Process of analyzing how a
particular string can be generated by a
grammar

e Top-down: Start from the “start symbol”
e Bottom-up: Start from the string
Hybrid: Combination of both

CSC460 C2

Shorthand
e Alternatives: A® a|b
*cA® a
cA® Db
¢ Optional element: A ® a [b]
*cA® a
«A® ab

CSC460 C2

Demo

Top-down Parsing

« Example: Recursive-descent parsing

— Keep the current input and the remaining part
of the rule on stack

— Expand nonterminals
— Check terminals against the input

*S® A
*A® aAb|ab

Cscas0 C2 10

Demo

Bottom-up Parsing

« Example: Shift-reduce parsing
— If the RHS of a rule matches a part of the
input, reduce it to the LHS symbol

— Otherwise, push the leftmost symbol onto the
stack and repeat (shift)

CSCa60 C2 Essential component for processing?

Main CF Property

» Matching growth to the left and right
-Eg., (T()T) 01, &y...808n-8y

 Characterized by balanced rules
-Eg,A® (A),A® 0OALA®aAxqg
¢ Characterized by the use of stack

—E.g., pushing ‘(" and later popping it and
matching with ‘)’ ! ;
0"1n2k3k, 0"2k3k1", 0] 2k3ko(n- |)1n

CSC460 C2 12

Push-Down Automata (PDA)

Read-only, left-to-right input tape
[slylm[bJo[1]s] [g[i[v[e[n[D][O]

Nondeterministic
Machine with a finite number of states

‘ Some mechanism to control ‘
‘ State 0 ‘ State 1 ‘ State 2 } """""""" ‘ State k‘

CSC460 C2

13

PDA, Formally

*M=(QS,Gdq,F)

— Q: set of states

— S: set of input symbols

— G set of stack symbols

—d: transition function Note: € as the empty string
Q- (SE {e})” G® P(Q " G*) power set
G*: string of stack symbols

- q,: initial state T Q

—F: set of final states | Q

CSC460 C2

14

Equivalence of CFGs and PDAs

» Simulate a CFG with a PDA
» Simulate a PDA with a CFG

CSC460 C2

15

Group Exercise 2

 Are there any potential parsing problem
the following grammars?

A B C

*S® A *S® A *S® A
*A® aAbjab <A® aAa °*A® aAa
*A® e *A® b *A® a

Cscas0 C2 16

Ambiguity

¢ Multiple derivations of a single string
¢ A complete analysis requires
nondeterminism.
» Problems with respect to:
— Semantics
— Efficiency

CSC460 C2 17

Deterministic PDA (DPDA)

» PDA where the range of the transition

function is a set of singletons (unique
state).

— Equivalently,
PDA: Q" (SE{g) G® P(Q" O
DPDA:Q " (SE{e})) G® Q" G
« Sufficiently powerful to characterize
programming language core
« Efficient parsing algorithms are known.

CSC460 C2 18

Deterministic CFL (DCFL)

¢ A subset of CFLs that can be processed
by a DPDA
¢ No easily identified class of grammars

— Practical issue for specifying a programming
language

CSC460 C2 19

Extended Chomsky Hierarchy

TM-recognizable (RE) > Grammar/TM

Decidable (Recursive)™>\-- [Decider
Context-Sensitiver\-- - CSGI/LBA
Context-Free>y-f-/--- CFG/PDA
/IDPDA
P RegExp/FSA

Cscas0 C2 20

Unit Summary

¢ Many mini languages can be specified and
processed by CFLs and PDAs.

¢ CFG: A single nonterminal on the LHS
(e.g.,A® a)

¢ CFL: Specified by CFGs

* PDA: Process CFLs

* DPDA/DCFL: Deterministic subset of

PDASs/CFLs ~ backbone of programming
Iangzuages

CSC460 21

Summary Question

e Can you see the “context-free”
property in some real-life
phenomena? Explain.

¢ Questions/Comments/Suggestions

Cscas0 C2 22

